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IL. Introduction

Since the June 1, 1980 starting date of our contract with the

U. S. Army Research Office (DAAG29-80-K-0006), significant progress

has been made in the areas of proposed research. we believe that

the power and versatility of Grenander's Method of Sieves as a

general approach to nonparametric estimation is now well

established. Depending on the chosen sieve, it offers an array of

new approaches in specific applications and it frequently

contributes to our understanding of well-studied estimators and

suggests improvements of them. Although our theoretical

understanding is not complete, we now have a firm mathematical and

intuitive understanding of the method. In the past year and a half

we have been increasingly supplementing our analytic approach with

more detailed explorations of specific practical applications.

In Section II we shall review the essential ideas behind the

method of sieves and lay the foundations of the problems that have

guided our research during the contract period. Section III

summarizes our progress and highlights concrete results that have

been obtained. The summary identifies four broad areas where

progress has been made: the general theory of sieves for

nonparametric estimation, theoretical and methodological aspects of

selecting sieve parameters (cross-validation), studies of specific

method-of-sieve estimators, and methodology and development of

reources for computer experiments. Section IV describes projects

that are currently being pursued, including manuscripts in various

stages of preparation and collaborative efforts on applications of
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nonparametric estimation theory and the method of sieves to digital

picture processing. Image processing problems of segmentation,

registration, and reconstruction have proven to be a fertile vource

of interesting and important theoretical and applied problems in

nonparametric estimation. Section V lists the technical reports and

papers that document progress on specific research problems in our

project. Section VI acknowledges the personnel who have contributed

to the effort.

II. The Method of Sieves
1

Techniques for estimating finite dimensional parameters

typically fail when applied to infinite dimensional problems.

The difficulties encountered in moving from finite to infinite

dimensions are well illustrated by the failure of maximum

likelihood in nonparametric density estimation. Let xl,...,xn

be an iid sample from an absolutely continuous distribution with

unknown probability density function (pdf) ao(x). The maximum

likelihood estimator for a0 maximizes

(1) 1nn  ax.

i=l 

over some specified set of candidates. But if this set is too

large, then the method will fail to produce a meaningful estimator.

Much of the material in this section appeared in a paper by

Geman and Hwang [19]. It is included here for the purpose of
making this proposal, as nearly as possible, self-contained.
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For instance, in the extreme case nothing is known about a0 ,

and the maximum of (1) is not achieved. Roughly speaking, we

move out of the parameter space (the space of all densities)

toward a discrete distribution with jumps at the sample points.

Another example of the failure of classical methods to solve

infinite dimensional problems is the breakdown of least squares

in the nonparametric estimation of a regression. Let X and Y be

random variables and let (xl,yl),...,(xnyn ) be an iid sample

from the bivariate distribution of (X,Y). The least squares

estimator of the regression function E(Y!X=x) minimizes

n 2(2) Ii = 1{Yi-a (xi)1

Observe that the minimum is zero and is achieved by any function

which passes through all of the points of observation

(xl,yl),...,(xn,yn). Excepting some very special cases, this

set does not in any meaningful sense converge to the true regression.

Grenander [24] suggests the following remedy: perform the

optimization (maximization of the likelihood, minimization of the

sum of square errors, etc.) within a subset of the parameter space,

and then allow this subset to "grow" with the sample size. He

calls this collection of subsets from which the estimator is

drawn a "sieve," and the resulting estimation procedure is his

"method of sieves." The method leads easily to consistent

nonparametric estimators in even the most general settings, with

different sieves giving rise to different estimators. Often the

sieve estimator is closely related to an already well-studied
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estimator, and may suggest an improvement, or a new point of

view and a new motivation.

The histogram is a simple example of a sieve estimator.

Consider again the problem of estimating an entirely unknown

density function a0 (x). We have seen that unmodified maximum

likelihood is not consistent for this problem. A sieve is an

indexed collection of subsets of the parameter space, such as:

SX = {a: is a pdf which is constant on [ ,- ,

k=O,±l ±2 ....

A > 0. The method of sieves estimator maximizes the likelihood

I1=la(xi)' subject to a ES., allowing A to grow with the sample

size. The well-known solution is the function

&(x) =  {xi: Ik-1 < x" < -} for x E k),
n - A

i.e. the histogram with bin width Xl Putting aside details,

we know that if Xn + sufficiently slowly, then & is consistent,

e.g. in the sense that Ja(x)-a0 (x)Idx - 0 a.s.

For the same problem, a different and more interesting sieve

is the "convolution sieve":

SX2 (2

SA = {a:a(x) = X e 2 F(dy), F an arbitrary cdf).

This time, maximizing the likelihood within St gives rise to an

estimator closely related (but not identical) to the Parzen-

Rosenblatt (Gaussian) kernel estimator. In fact, the latter

is in the sieve SX: take F to be the empirical distribution
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function. But the maximum of the likelihood is achieved by

using a different distribution. As with the Parzen-Rosenblatt

estimator, if X t - sufficiently slowly (i.e. the "window width"

is decreased sufficiently slowly) then the estimator is consistent.

A more precise discussion of this and some related sieves is in

section III.

The inconsistency of least squares nonparametric regression

can be similarly rectified by introducing sieves. Let us look

again at the regression problem formulated above; recall that

(Xl1,Yl),...,(XnY n ) is an iid sample from the bivariate

distribution of (X,Y). Given a sieve S,, the method of sieves

estimator a minimizes the sum of square errors, (2), subject

to aE S If, as an example,

A.

A a~ absolutely continuous, I ~)2d )

then a is uniquely determined; it is a first degree polynomial

smoothing spline; i.e. a is continuous and piecewise linear with

discontinuities in (d/dx)a at Xl,...,xn; see Schoenberg [41].

It is possible to show that if X increases sufficiently slowly,

then the estimator is strongly consistent for E(YIX=x) in a

suitable metric; details are in Geman [18]. Other sieves applied

to the same problem lead to kernel estimators and still others

to new estimators. Even if the squared loss function {y-a(x)2

is replaced by a "robust" alternative, minimization over too

large a set will again fail to produce a meaningful estimator.

In exa- jy the same way, sieves offer a remedy in this case as well.
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III. Progress During Current Contract Period

We will describe in detail our progress during the current

contract period. Most of what we will say is included in

finished, and in some cases already published, manuscripts. In

addition to making our presentation self-contained, the details

included here will make our later discussion of proposed research

much clearer.

A. A General Consistency Argument for Method of Sieves

Estimators.

We began our work on the method of sieves by formulating

theorems establishing the consistency of sieve estimators

derived from the maximum likelihood procedure. For the problems

addressed, these theorems hold in the most general possible

settings. In our original proposal we expressed our intention

to extend these theorems to apply to a wider variety of problems,

including other criterion functions (such as least squares,

robust loss functions, etc.) and including observations, such as

continuous time stochastic processes, which are not naturally

indexed by a discrete parameter. We found, however, that this

greater scope led to theorems whose application required the

verification of numerous complicated conditions.

The consistency problem for the method of sieves is

essentially one of identifying an appropriate unper bound on

the rate of growth for the sieve. Instead of a general theorem

for this identification, we have developed a general approach.

What we have is a versatile strategy for determining bounds on



growth rates of sieves, and it easily achieves all of the desired

extensions. Whereas a rigorous explanation of the technique would

be unnecessarily involved, we can briefly describe it in a

heuristic manner and refer to several papers for details of its

application.

Our approach to establishing consistency for sieves is an

adaptation of methods first developed by Bahadur 15 ], Wald [56],

and others in similar connection with extensions of the maximum

likelihood procedure. It might be called the "small-ball

technique", as it consists of partitioning the sieve into balls

sufficiently small so that all estimators within each ball behave

similarly. One first demonstrates that when using the estimator

at the center of one of these balls the value of the criterion

function (log-likelihood, sum of square errors, etc.) is well-

approximated by its expected value, at least with high probability.

If this approximation can be made to hold uniformly over all

centers, then it will also hold over the entire sieve - assuming,

again, that the balls are sufficiently small. As the sieve Prou-s,

the balls are made smaller and more numerous. If the sieve

growth is sufficiently slow then a "uniform law of large numbers"

can be established: optimizing the criterion function over the

sieve is asymptotically equivalent to optimizing its expected

value. The point is that the latter optimization typically

defines the target parameter. As an examnle let a0 be an unknown

density function, and consider the likelihood crtierion: the

maximization of

*
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1 nn log UXi )

over xE Sl is asymptotically equivalent to the maximization of

n
E n log U(xU)og u(x)dx
n ii f Jc 0 (lo

provided the sieve growth is sufficiently slow () grows slowly

with n). It is easily demonstrated that

fo(x)log o(x)dx

achieves its maximum at a = aO , the unknown density. Nonparametric

regression by least squares leads to the problem of minimizing

I n I2
S (yi-a(xi))

i=l 1 1

over a sieve aE SA (we use the notation introduced in section II).

Provided that the sieve growth is sufficiently slow, this is

asymptotically equivalent to the minimization of

E ). (yi-a(x))2 = E(Y-a(X))2.
i=l

For the latter, a minimum is achieved by the regression

a(x) = E{YIX=x), i.e. by the target parameter. For robust loss

functions, the minimizer of the expected criterion function may

or may not be the target parameter, depending on the true under-

lying distribution. Hence, sieve estimators derived from robust

loss functions have an added condition for consistency.

By now we have numerous examples of the application of

this technique to problems of density estimation, regression

(with and without robust loss functions), the estimation of convex
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sets from noisy one dimensional projections (a problem arising

in emission tomography), the estimation of images of conformal

mappings from noisy boundary observations, and the estimation

of the mean and drift functions for various stochastic processes.

For the latter, we are able to exend our original results from

the artificial restriction of using only partial and discrete

observations of a continuous time process to the more natural

and no doubt more efficient use of the entire continuous time

development of the process. Details on some of these applications

of the "small-ball technique" can be found in the references

1 9],[17],[181, [19] , and [3S].

B. Crbss-validated Smoothing.

In our original proposal we indicated that consistency

results for estimators smoothed by cross-validation would be

given the highest priority in our research program. In this

section, we will review the role of cross-validation in

nonparametric estimation, and we will summarize our progress

in establishing properties of estimators smoothed by this technique.

1. The Smoothing Problem

The practical application of nonparametric (infinite

dimensional) estimators requires the choice of a "smoothing

parameter". For estimators generated by the Method of Sieves,

we can specify as a function of sample size an upper bound on

the rate of growth of the sieve which will guarantee consistency,

but this rate tells us very little about the practical choice

of a sieve size when faced with a finite fixed sample. Too
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large a sieve produces an undersmoothed, or "overfit",

estimator, and too small a sieve produces an estimator that

is little influenced by the observations - an oversmoothed

estimator. The proper choice of sieve size for finite fixed

samples is the smoothing problem for the method of sieves, and

it has its analogue for all non-Bayesian estimators of infinite

dimensional parameters. Thus the histogram requires the choice

of a bin-width; the kernel estimator requires the choice of a

window width; the maximum penalized likelihood estimator ([22],

[51)) requires that a weight be assigned the penalty term; and

orthogonal series estimators must be suitably truncated [29],

or "band limited" [54]. Regarding kernel estimators, Silverman

[46] observes that "there seems to be considerable need for

objective methods of determining the window width appropriate

to a given sample". Speaking more generally, Wahba [54] remarks:

"A major problem in density estimation is to choose the smoothing

parameter(s), which are part of every density estimate...". And

the problem is not peculiar to density estimation. Splines,

kernels, and the newer "recursive partitions" (see, for example,

[23]) for nonparametric regression, all require first a version

of smoothing to be fully defined.

To illustrate the problem more concretely, in the context

of the method of sieves, let us return to the convolution sieve

for density estimation introduced earlier in section II:X2

X 2 2

S {a:a(x) Jke- 2-XY F(dy), F an arbitrary cdf).
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(This example also gives us an opportunity to Dresent some

additional work done during the current contract period.)

Recall our description of the associated maximum likelihood

estimator as being closely related to the Parzen-Rosenblatt

kernel estimator. More specifically (see [20] for details):

Proposition 1  For each n and I define

n = n n
MT {aS: (x sup H 8(xi))

i=l 8ESX i=l

- set of maximum likelihood solutions. For ever), n and X

M is nonempty, and if a EM n then

A 22
n (--( - ) 2

U(x) = P e
i=l 2-

for some Yl''.''Yn and Pl'... Pn satisfying pi > 0, 1 < i < n,
n

pi = 1. Furthermore, if min(x1 , .. xn) < max(x 1 . .. .x n) then

min(xl,...xn) < min(yl,... Yn) and max(Yl,...yn) < max(xl,...Xn).

It is interesting to note that the kernel estimator (with

Gaussian kernel)

SW _ 1 X 1 eT ( 'i

i n I7T8(x) n ._

is in S,, but the last statement in the proposition indicates

that 8 is not among the maximum likelihood solutions, i.e.

1 If in the definition of the sieve S the Gaussian kernel is

replaced by a double exponential, then a more complete
characterization of the maximum likelihood solution is available.
This characterization was presented recently by Blum and Walter
[6 1 in a paper that also makes an interesting connection
between the convolution sieve and other methods for nonparametric
density estimation.
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1

* .
Although we have characgerized the maximum likelihood

set up to the 2n parameters yl, ...y, pl,...pn , its actual

computation is difficult. The proposition suggests a smaller

and computationally more attractive sieve:

7
^ 1I n -2(-y )

S {a:a(x) i /

i.e. we give equal mass to each kernel, but allow the locations

to move in such a way as to maximize the likelihood. (Here

again, it can be shown that the kernel estimator is not among

the maximum likelihood solutions.) We have experimented with

S and have found, as a rule, that the number of distinct y's in

a maximum likelihood solution is considerably smaller than n.

In other words, the kernels will often coalesce to achieve an

increased likelihood. Sometimes this results in strikingly"

accurate density estimators, while at other times this "maximum

likelihood" solution is a poor second to the corresponding

(same window width) kernel estimator. In either case, this

estimator suffers the very same stability problem as the kernel

estimator: the results are critically dependent on the choice

of the kernel width (which is here governed by the sieve parameter

X). The important choice of a good A is the smoothing problem

for this estimator.

1 Again referring to the paper by Blum and Walter, the surprising

result for double exponential kernels is that the kernels are
centered at the observations. However, the classic kernel
estimator is still, in general, not the maximum likelihocd
solution.
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One approach to this critical dependence on window width

(call it a) is to include a as a free parameter within the

sieve, and thus allow it to be chosen by maximum likelihood.

But we must be somewhat careful; we cannot merely replace S by

n _2 (x-Yi)2
{CL:ox) 1 e 2a

Si=1 2

since then the maximum of the likelihood is achieved with a=O

and the kernels centered at the sample points. Let us instead

define the sieve parameter X to be the number of kernels,

restricting this to be smaller than n (X < n), and consider

---7 (x -Y i ) 2

1 1 2s= {aax g- e
i=l

The associated maximum likelihood estimator has performed well

in our simulations, and we can demonstrate (by an application

of the "small-ball technique") that if X in such a way that
n

in = O(n1/5-E) for some E > 0 then

sup fja(x)-a 0 (x)Idx - 0 a.s.
-n

aEMX
n

where Mn is the maximum likelihood set associated with the sieve

S,, and a0 is the true density. But for fixed sample the degree

of smoothing is still important: with moderate sample sizes

(n z 50), X=1 generally oversmooths and X=n-1 will almost always

drastically undersmooth.
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Among the important practical questions about sieves that

remain unanswered (including relative efficiency, asymptotic

distributions, good sieves for robust estimation, etc.), perhaps

most pressing is this smoothing problem. Probably the most

broadly applicable and widely studied of the general solutions

proposed to the smoothing problem is the method of cross-

validation (for an introduction, see Stone [50] and Wahba [54]

and the many references therein). We have experimented

extensively with the method and have found what many others have

found (see [44],[53],[54], and [55] to name just a few): that

cross-validation is often times a strikingly effective means of

choosing an appropriate degree of smoothing. But success with

the method is not guaranteed. An example of its failure on a

seemingly canonical problem is due to Schuster and Gregory 1421.

They prove that cross-validated kernel estimators with compact

kernels are inconsistent for the exponential distribution. They

also demonstrate by simulation that these estimators have poor

small sample behavior. Other authors have raised doubts about

the effectiveness of cross-validation for choosing the smoothing

parameter in ridge regression (see, e.g. [14],[301).

Since there is very little known analytically about cross-

validated estimators, and since there seems to be a real practical

need for a better understanding of the method (especially in

identifying problems to which it can be successfully applied),

and since the method offers a natural solution to the smoothing

problem for the Method of Sieves, we have spent considerable time
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in a mathematical study of cross-validation. Subsection 2

below is a brief introduction to the method, and subsection 3

presents the analytic results about cross-validation that we

have obtained during the current contract period.

2. Smoothing by Cross-validation

The general idea behind data-driven smoothing is to

measure, as a function of the smoothing parameter (call it X),

the ability of the estimator to "explain", or to "fit", the

observed data. X is chosen to maximize this measure of

explanation. When smoothing by cross-validation, in particular,

the measure of explanation is obtained by successively deleting

single observations, computing the estimator from the remaining

observations, and then applying the estimator to the deleted

observation. The details are most easily illustrated with

specific examples. For this purpose, we will use the kernel

estimator, call if f :

1 n-- A! (x XK(X(x-xj)

j=l

for some probability kernel K. We will denote by f ~nl the

estimator computed after deleting the i'th observation, i.e.

fi ( = I T XK(X(x-xj)).fA'n-1l ;

i i

Now f nl is not dependent on x i , and fnl(xi) may be taken

as a measure of the anpropriateness of t as a value for the

smoothing parameter: If f (xi ) is large, then it might besmooting arameer: f f n-
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said that f, "anticipated" the observation xi, thatsaid t af,n-1l n ht7I

is an appropriate degree of smoothing (at least for samples of

size n-1); small values of fli (xi) suggest that the observa-

tion x. was unlikely (under the density f 1 ), and may be
1 X , n-l

interpreted as evidence against the appropriateness of X. As i

ranges through the full sample we obtain n such measures of fit,

and these may be combined into a likelihood-like expression:

n(
(3) L = f (Xi).

i=l X ,n-i

One version of cross-validated density estimation (first proposed

by Habbema et al. [26], and separately by Duin [12]) chooses )

to maximize LX (call this value A*, the "cross-validated smoothing

parameter"), and then forms the corresponding estimator, f *,n

(the "cross-validated kernel estimator").

If, instead of the kernel estimator, f ,n is defined by

n~
Co n

,n n I X (x){ X x •- • (x.)}
A(x nj=, i=l [ ,)

(a histogram with bin width 1/X, and an instance of the Method

of Sieves), then exactly the same procedure defines a cross-

validated smoothing parameter, and a resulting cross-validated

estimator. f A could in fact be any density estimator in whichA,n

represents the degree of smoothing (possibly, A is vector valued).

For example, A may be the parameter indexing the sieve, in which

case cross-validation provides a fully data-defined Method of

of Sieves estimator. And the setting is not limited to density
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estimation; cross-validation applies to regression (with, for

example, the "likelihood-like" expression (3) replaced by an

analogous "sum of squared errors-like"expression) and many other

estimation problems as well. Whatever the setting, cross-

validation can be used to automatically smooth an estimator

derived by the Method of Sieves.

3. Results about Cross-validated Estimator

We have studied the application of cross-validated

estimators to both infinite and finite dimensional problems.

In all cases, our motivation has been the usually good behavior

of these estimators for small samples, as demonstrated by

computer experiment (see subsection D below).

Our results on infinite dimensional estimation problems

concern the consistency of cross-validated kernels and histograms

for nonparametric density estimation. For details we refer to

I ]- but here, loosely stated, are the results: let f ,n be

either the histogram estimator with bin width 1/A or the kernel

estimator with a compact kernel and window width 1/A. Let A ben

the corresponding cross-validated smoothing parameter, given n

observations (see previous subsection for the definition of n).

If f, the target density, has comnact support then f * is

strongly consistent in the L 1 metric, i.e. n

f (x)-f(x)ndxn 0 a.s.X n
-00 n
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Most instances of Method of Sieve estimators are only

implicitly defined - as the solution of an optimization

problem over a subset of the parameter space. The availability

of an explicit representation for histograms and kernel

estimators led us to believe that cross-validated versions

of these estimators would be relatively easy to analyze. In

fact, they were not. The proof of the above-stated consistency

theorems is long and difficult. And it is probably true more

generally that analysis of nonparametric estimators smoothed

by data-driven techniques is extremely hard.

Some estimates for finite dimensional (parametric) problems

also contain unspecified smoothing parameters, and these too can

be data-defined by cross-validation. With the intention of

using these more elementary examples to learn about cross-valida-

tion in general, and because finite dimensional applications of

cross-validation are interesting in their own right, we have

begun a mathematical study of such estimators. Consider, for

example, the linear regression problem:

Yi = XiBl+..+x ip B p+ci, 1 < i < n ci iid N(0,a').

Or, in vector-matrix notation:

Y = Xa+ E - N(,a 2I).

The least squares (maximum likelihood) estimator for B is

^ =xT -1lT

8 (X ) X

The ridge estimator for a is
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= (xTx -1n

S X+nXI) X Ty X > 0.

Observe that 0 is the least squares estimator. The introduction

of X into the least squares estimator may be motivated by any

of the following considerations. (1) 8l minimizes

+ + n 2.811

Hence 8 may be viewed as a penalized least squares estimator,
AT

with penalty for large values of 8. (2) When xTx is "nearly

singular" (poorly conditioned) a0 has large MSE due to the fact

that the inverse of xTx is involved in its derivation. Addinc

n I to xTx improves the conditioning and may be expected to

reduce MSE. (3) Perhaps the best justification for ridge

regression is the following easily demonstrated fact: for

every n, 8, and a2 > 0, there exists a X > 0 such that

EiS-iXII 2  < EII - 0 112

Unfortunately, the optimal X (in terms of NISE) depends on B

and a 2 so that we are again faced with a version of the

smoothing problem.

Let us define a cross-validated version of the estimator

8\. Define aX to be the ridge estimator obtained by deleting

the i'th observation. The squared error in predicting the i'th

observation,
p A'

(Yi o axijmij)n

measures the appropriateness of X as a smoothing parameter.
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Define

L n P ^i 2

X n l (Yi " ij ?j

and choose A=X to minimize L The cross-validated ridge
Sn ^

estimator (due to Allen [4]) is B, Our simulations (see
n

subsection D below), and those of others (see, for example

[301) indicate that can be an extremely good estimator

for , especially when xTx is nearly singular or o is large.

In almost every case that we have studied, the mean squared

error of the cross-validated ridge regression estimator is

smaller than that of the ordinary least-squares estimator.

Often, the ridge estimator reduces the MSE of least squares

by 50 or more percent.

There is a closely related estimator, due to Golub, Heath,

and Wahba [21], called the "generalized cross-validation" (GCV)

ridge regressor. The GCV ridge regressor is computed by first

rotating the coordinate system and then deriving the ordinary

cross-validation (OCV) estimator. Simulations demonstrate that

GCV generally performs somewhat better than OCV, and GCV is

more easily computed and has proven to be more mathematically

tractable. Although the analytic results mentioned below are

for both GCV and OCV, we will not formally define the CCV

estimator since this would require that we introduce somewhat

involved notation.
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Here, again loosely stated, is what we know about the

analytic properties of cross-validated ridge estimators: If

8 is the GCV or OCV ridge regressor then
, n

ex - jj 0 a.s.
n

and (Tl/2(S -8) N(0,a 2 I)

Observe that for least squares the distribution of

i2 (x Tx) 1/2 B

is exactly N(0,a 2I). Thus the cross-validated estimator

asymptotically assumes all of the distribution properties of

the ordinary regression estimator, while for small samples

typically improving on ordinary regression (as measured by

mean square error).

Principal component analysis is another modification of

least squares regression that is used (among other reasons) for

problems with ill-conditioned design matrices or small samples.

It has been suggested (see [131, for a discussion in a slightly

different context) that cross-validation may be an effective

means for choosing the number of components retained in a

principal component analysis. Our conclusions with regard to

cross-validated principal component analysis parallel those for

the cross-validated ridge regressor: simulations demonstrate its

potential superiority over ordinary repression for finite samples,

1 A more precise statement of this and other results for finite

dimensional problems, together with proofs, will appear in a
forthcoming manuscript by Geman and graduate student, Aytul Erdal.
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and we can show that cross-validated principal component analysis

is asymptotically equivalent to least squares. (For the latter,

one simply shows that, almost surely, for all sample sizes

sufficiently large the number of components chosen by cross-

validation equals the real dimension of the regression surface.)

Details will be in the manuscript by Erdal and Geman.

C. Studies on Specific Method of Sieves Estimators.

In addition to general questions of consistency for

Method of Sieves estimators, we have made a stud, of individual

properties for some particular instances of the method. Two

examples are discussed.

1. Estimation of a Poisson Intensity Function.

One problem area that we have studied from several

perspectives is the estimation of the intensity function of a

nonhomogeneous two-dimensional Poisson proce...- based 2. the

observation of random projections of the points in a realization

of the process. Motivation to study these problems comes from

their direct application to computed tomography -- the

reconstruction of the structure (intensity function) of a body

in two or three dimensions on the basis of sets of projections

of the body to one or two dimensions.

Our work to date has developed a basic understanding of

theoretical properties of estimators derived from the method of

sieves and the principle of maximum likelihood [33,34,35],convergence

properties of computational algorithms for solvinz the very large

scale optimization problem when maximum likelihood is used for
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image reconstruction [ 1,34], and a software implementation for

a microcomputer of two alternative algorithms for computing the

m.l.e. 11].

The mathematical problem is related to single-photon

emission tomography and to other nuclear medicine applications

in section V below. Closely related applications and mathematical

formulations are given in the recent work of Shepp and Vardi [45].

In our work, however, we have concentrated on a connection

between the continuous spatial background Poisson process on

one hand and estimates of its intensity function in the form of

digital pictures, on the other hand. The relationship between

the unknown function on a continuum and discretized estimates

of it fits very naturally within the framework of the method of

sieves.

The mathematical and inference problems take the following

form. We describe the formulation in two dimensions; there are

no essential changes in the general formulation or in the nature

of the results in three dimensions, but the notation is a bit

more cumbersome.

N
Let {(Xi,Yi)}i 1 be the NT points of a realization over

the time interval [0,T] of a Poisson process with intensity

function p(x,y) per unit time. The function o is unknown and

its estimation is our goal. The compact support Q of p is

known. For simplicity, we take P to be the unit square centered

at (0.0). The realization of the process is evolving with time t.
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In fact, NT is Poisson with mean ENT T f o(x,y)dxdy. We

assume p is in LI( ) .

The points (Xi,Yi) are not directly observable. Rather,

we observe a ray with an orientation 0. and distance S. from1 1

the origin. The orientation 0i is uniformly distributed on
NT1

[0,27); {O }T are mutually independent and are independent
1 i=l needn

of {(Xi,Yi)}. The distance S i is a function of Xi,Y i and 0i;

an oriented line Li in direction 0i is passed through the

point (Xi,Yi) and S. is the signed distance Si = -X. sin 0 +

Y. cos 0. from the origin to L. Our observables are the N
1 1 N 1 *T

points {(0i,Si)} i=l (In the single-photon tomography applications,

one actually observes grouped data in place of the points (Cisi

and effects from attenuation and photon scattering must be

accounted for.)

The problem is then to estimate p on its domain 2 from
N

observation of {(Oi,S i )i=l

No a priori restrictions are imposed on P, except

PE LI(Q). Reasonable nonparametric estimators can be expressed

through the method of sieves. One aspect of these formulations

is distinctly different from problems analyzed previously: the

observables, even when conditioned on NT, do not constitute an

iid sample with intensity (viz. density) p. Instead, the

observables represent an iid sample from a density proportional

to Ro, where R is an integral onerator on L1 (Q). To estimate r,

we need to address the problems of "inversion" of R, topological

and onerator theoretic problems such as identifyini the appropriate
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domain for R, demonstrating that it is invertible on the image

of that domain, and understanding continuity properties of R

and R .

Results about consistency of nonparametric estimators of

p and about characterization of algorithms for computing

estimators in special cases are reported in [34,351. First weNT

confirm that {(Oi,S)}i constitutes a realization of a Poisson

process on a region f2; the intensity function of the process is

O(f,s) i T p(xy)dk R(es),
Le (s)

wlhere the line integral is taken over the straight line path

Le(s) passing through (x,y) having positive orientation e, and

satisfying s=-x sin 0+y cos e; k denotes arc length on Le(s).

The transform domain Q2 is depicted in the Figure 1. It is the

set of all (6,s) for which the corresponding line intersects

the square Q2. R is the Radon transform [27].

In the general approach followed in [35], the main steps

are (i) to specify a sieve and estimate p by maximizing the

likelihood of {(Oi,Si)} over the sieve, and (ii) to map the m.l.e.

Q* of ; into an estimator p* of P = R-1p.

The first step is reasonably straightforward, except for

purely technical problems associated with the domain 2 and the

unusual form relative to S of natural sieves. The likelihood

function assumes a convenient form for analysis:

N N
T j T P(O1,S)

T* i=l
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where XJJ p(O,s)deds.

The most "natural" sieve, thinking in terms of potential

applications to emission tomography and construction of digital

pictures, is based on a partition of Q into X congruent sfuare

pixels. Let B. denote the sets in this partition and let ¢. be
J J

the indicator function of Bk' j=1 to A Then

S {EL(): p = a
j-1

The image of SA in L (Q) determines the sieve
^1

S {pEL (£): p = [ ajipi,

where jp. Re . Each of the basis functions (,s) for $3

has a support inside £2 in the shape of a narrow sinusoidal band
A

(see Figure 1); the support of ip consists of the oriented lines

J
(O,s) that intersect the pixel R. Within its support, for any

fixed 80, X (e80 ,s) is a piecewise linear function of s.
Now p is estimated by fixing X AT and finding a maximizing

function PT in S, of the likelihood Y(p). Except for the

unusual structure of the basis functions A this is a straight-

forward implementation of the method of sieves. We can show,

using the "small-ball technique" on L1 (2) that if

(i) XT =(o(T/4) for some E > 0, and

(ii) p(@,s)Zn p(e,s)deds < , then

lim JJ (e,s) -o(e,s)Ideds = 0 with probability one.
£T
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Condition (i) is, we feel, not sharp, and we are continuing

to investigate this.

It is a delicate matter to translate the consistency of

PT into a consistency theorem for R = T" Indeed, R is

not a continuous mapping from L1 (Q) into L1 (2). We can, however,

regard R as an operator on a domain other than LI(Q) and obtain

useful continuity properties. Two approaches are possible,

based on results about the Radon transform developed by

Ludwig [311: (i) we can restrict R to a domain smaller than

L1 , impose strong regularity conditions and a stronger topology

on that domain and obtain a useful continuity property for rP,

or (ii) we can extend R to a domain larger than L1 , relax

conditions on elements of the domain, prescribe a weaker topology

for the enlarged domain, and we obtain a bicontinuous extended

operator R. The first approach requires us to impose unrealistic

smoothness restrictions on the intensity function e being

estimated, so the usefulness of theorems derived by this approach

is limited. The second anproach adheres to the spirit of truly

nonparametric inference by not impos'ng additional restrictions

on p. The price paid by the theoTy i that consistency results

are expressed in a weaker topology, that is, we will conclude

OT - o in a weak topology as T (but still in strong sense

probabilistically, i.e. almost surely). The approach bears a

strong resemblance to methods used to prove existence of solutions

of PDFs by first confirming existence of a solution in a ieak

sense and then analyzing the recularity pronerties of the weak

solution.
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For the nresent problem, starting with LI(Q) as our

space for p, it is natural to use an extension of R to the

space if' of Schwartzian distributions with compact support.

Any element of L1(Q) is such a generalized function since

f 2 p(x,y)o(x,y)dxdy is a continuous linear functional on the
R 

2

space J'= C OR 2 ) of test-functions €. Details of the extension

of R are given in 127] and [31]. The extended R is a bicontinuous

bijection from _WI to a completely characterized subsnace

Y"nN1  of i".

Now we can translate convergence of PT into converpence

of 0T . The strong norm convergence of cT to p implies

converjence in the weaker topology oF the rangeW'l nN , which

in turn, from continuity of R, implies convergence of CT to

p. Specifically, for any 0 in CO (IR 2), lim Jj T(x,v)(X,v)dxdv
T- c

J o(x,y) (x,y)dxdy with 
robability 

one.

This general analytical strategy is applied in [35] to

determine consistency of estimators based on alternative sieves.

Other results are reported in [34] where we consider

intensity functions p which are niecewise constant on subsets

of Q and we wish to estimate the unknown sets. We relate the

set estimation nroblems to more familiar problems of estimating

a univariate unimodal density function. That connection allows

us to adapt consistency and asymptotic distribution results

138, 57], to characterize nonparametric m.l.e.s in terms of
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convex envelopes of counting functions of the projected point

process, and to obtain direct computational algorithms for the

m.l.e. along with results on the complexity of the algorithms.

In directly related work, graduate student Nicholas Accomando

has designed and implemented algorithms on a microcomputer for

computation of estimators of p based on maximum likelihood and

the method of sieves. The algorithms are designed with the

single-photon emission tomography problems in mind and they

allow for effects of photon attenuation. Thus they implement

inversion of the more general attenuated Radon transform R

(see section V) of which R is a special case. The software

developed for the Data General MP-200 microcomputer uses a

combination of PASCAL and assembler code. The assembler

language modules are documented in PASCAL in order to facilitate

implementation on other computers. The programs implement both

gradient methods of calculating the m.l.e. and the EM algorithm

analyzed and used by Shepp and Vardi [45]. The software design

problem is a hard one since it requires the balancing of the

constraints of a small computer and of a very big optimization

problem. Accomando's system can handle the method-of-sieves

estimator with X = 8100 free parameters, corresponding to a

90x90 digital picture; the MP-200 has 32k 16-bit words of high

speed memory to which Accomando has added a board with 64k 16-bit

words. The programs will reconstruct a 60x60 phantom in about

fifteen or twenty minutes, depending on the algorithm (FM or

conjugate-gradient) and on the number of iterations needed.
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Accomando's implementation is convincing proof of the feasibility

of maximum-likelihood and the method-of-sieves for solving

large scale problems with readily available computational

resources.

2. Convergence Rates and Asymptotic Distribution

for some Canonical Sieves.

The general question of convergence rates and

asymptotic distribution for sieve estimators is extremely

difficult. Professor H.T. Nguyen, in personal correspondence,

has suggested that estimators based on sieves which consist of

increasing subspaces of a Hilbert space would be particularly

amenable to thorough mathematical analysis. A recent paper by

Nguyen and Pham [37] puts this idea to good use. The)' utilize

a sieve of this type to estimate the drift frunction of a

repeatedly observed non-stationary diffusion, and they are able

to partially specify rates of convergence and asymptotic

distribution.

Here is a more elementary example of Nguyen's idea, which

we have explored in some detail. Recall the nonparametric

regression problem discussed briefly in section 11. Let us

here take x, the "independent" variable, to be deterministic.

We then think of the distribution of Y as being an unknown

function of x, Fx(.). For this example, we will assume

xE [0,1]. The problem is then to estimate

C 0 (x) = ExIY] [ yF x(dy) xEtOl]Cc[~l
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from independent observations y n, where y- Fx., and
1

xl,..x n is a deterministic, so-called design, sequence. In

other words, for each i=l,2,.. .n we make an observation, Ni'

from the distribution F and from these observations we wishX.'
1

to estimate the mean of Y as a function of x. For a specific

example, let us assume that the design sequence, for fixed n,

is equally spaced on the interval [0,1]:

x. = ) j=l,2,...n.
j n

Of course, an unconstrained minimization of the sum of

square errors

n 2S(Yi -CL(x0))
i=l 1 1

will not produce a useful estimator. Using the Pilbert space

L2 ([0,1],dx), a sieve of the type suggested by Nguyen is the

"Fourier sieve"

m 2 ikx;

Sm = {a(x):a(x) = a ke
k=-m

it is particularly tractable and makes for a good illustration

of his idea. The sieve size is governed by the parameter m,

which will be allowed to increase to infinity with n. If we

restrict mn so that mn < n for all n, then ccn is uniquely defined

by requiring that it

n
minimize X (yi-a(xi))' subject to aE Smi=l " 1 n
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Because of the subspace character of the sieve, it is quite easy

to show that for any sequence mn+t such that m-/n 0 and m n
1

2 ^1 n _1I
E n (X)-ao(X)12dx = 0(-- + -

-n +J n()-' x m n
0 n vn

as n c o. In particular, if m n -,n , then

E f 1&n(x)-a0(x)I2dx 0(-)

0 /

as n co. (All under some very mild assumptions see [181

for details.)

What does the least squares estimator, an, look like?

A simple calculation gives the explicit form:

1n
Sn (X) =in .Dm (x-xi)

where D is the Dirichlet kernelm

D W e -2Trikx = sin Tr(2m+l)x
m 4<m sin Trx

Here, then, the least squares (sieve) estimator turns out to

be a kernel estimator. Kernel estimators for nonparametric

regression have been widely studied, although from a somewhat

different point of view. See [3],[l1],[lq,[43] and [48] for

some recent examples. It is not too difficult to now exploit

this simple form for an, and say " good deal more about its

behavior. Let

V(x) = (Y-a 0 (x)) 2F (dy),
-00
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the variance of Y at x. Then if a0 (O) = a 0(l), and if

Mn t, such that m = 0(n ) for some < a < 1, the process

t

Pn(t) Vf (an(x)-ao(x))dx

0

converges weakly on [0,1] to the diffusion, P(t), defined by

dp(t) = VVTiT dwt, p(0) = 0

where Wt is standard Brownian motion. (Again, see [18]

for details.)

The conditon a0 (0) = a0(1) is awkward, but it cannot be

removed. It is a consequence of the sieve, Sn, which admits

only functions which are continuous on the unit torus. Another

sieve of the subspace type, more natural in the absence of the

assumption a0 (0) = a0 (1), is

I m
S n = {(x):a(x) = J a k cos[k arc cos(2x-l)]}

k=- m

i.e. replace the trigonometric polynomials by the Chebyshev

polynomials. Here we would want to choose a design sequence

which preserves the orthogonality of the basis sequence:

1 1
x + + cos[2j-1)r/2n], j=12,... n.

We presume that the above results have their analogues for Sn

as well.

Still a good deal more can be said about the estimator an
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With suitable restrictions on the growth of mn, we can establish:

pointwise convergence (Ejan(x)-a 0 (x)I2 0 for each xE(0,1));

pointwise asymptotic normality; and a relation between the

smoothness of a0 and the rate at which

12

E f I n(X)-aO(x)I2 dx converges to zero.

0

D. Computer Experiments

One of the most powerful strategies for our past

research on the method of sieves has been to systematically

use computer experimentation. The experiments often involve

simulation of the processes and inference methods which we are

analyzing. And frequently the experiments do not involve

simulation per se, but use the machine to solve numerically

the analytical hurdles that come up in a purely theoretical

analysis. Both kinds of experiments have been invaluable

complements to our analysis. They have provided direction and

reinforced confidence in the day-to-day evolution of the

theoretical work; they have made it possible for us to understand

and to demonstrate connections between asymptotic theorems on

one hand and small-sample properties of method-of-sieves estimators

on the other hand; and they have frequently suggested hypotheses

to us, providing new ideas to be confirmed later by rigorous

analysis.

Most of our experiments have been carried out interactively,

usine a substantial library of APL proerams develored by

Grenander and McClure [25] as a tool for experimental mathematics.
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The library has been assembled systematically over the Past

four years. It is well documented and is now being shared

with mathematicians elsewhere. The examples of experiments

described below have been facilitated by the availability of

the programs for interactive graphics, simulation, linear

algebra and matrix spectrum analysis, computational oeometrv,

quadrature, and discrete Fourier analysis.

Example 1. The theortical understanding of cross-validated

ridge regression is essentially complete, at least the

asymptotic properties are clear, since the cross-validated

estimator e has been shown to have the same asymptotic
n

distribution as the least-squares estimator of . Extensive

simulations have been useful for demonstrating (i) the small-

sample behavior of 8, , (ii) the relationship between ordinary
n

and generalized cross-validation, (iii) the sensitivity of the
AT

performance of 6 to ill-conditioning of X X, and (iv) the
n

dependence for small-samples of the mean-squared-error of S
,n

on the error variance a

Two examples of the simulation results are depicted in

Figures 2 and 3. The ordinate on each graph is a so-called

Relative Error for a cross-validated (ordinary or cenerali:ed)

ridge regression estimator Xof in the model Y =

where X is nxp with n=30 and p=S, the variance of E is ca1

(o=.0l is Figure 2), and a is an index of the ill-conditioning

of the SxS matrix XTX (a=0.8 in Figure 3); the eigenvalues of

T 2X X are, on the average, 1-ci with multiplicity four and l+ 4 c"
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with multiplicity one, so xTx collapses to a rank one matrix

as a goes to 1.

The precise descriptions of the two mean-squared-errors,

prediction and Euclidean, used to assess a, are not particularly

important for describing the general conclusions that can be

drawn from these experiments. It suffices to know that the

Relative Errors are ratios of a mean-squared-error for the

cross-validated estimator to that mean-squared-error for the

least squares estimator of 6. The asymptotic efficiency of the

least-squares estimate when c is Gaussian together with the

asymptotic distribution theorem for a, (see p.25) combine to show

that for any fixed values of the parameters a and u, the

Relative Error goes to 1 as n goes to -. The difference from 1

for these small sample (n=30) experiments is striking. Both

ordinary and generalized CV estimators perform significantly

better than the asymptotically efficient least-squares estimator.

The results also exhibit the greater advantage of ridge regression

with cross-validation as X TX becomes more singular.

These simulations were carried out fairly early during

Erdal and Geman's study of properties of cross-validated ridge

regressors and the experiments had a direct influence on the

direction of the theoretical developments. The pictures Provided

convincing evidence that the ridge regressors are in general as

good as (and usually better than) ordinary least squares. In

addition, the relative small differences in simulation results

for the ordinary comnared to the Reneralized cross-validated

estimators stimulated the successful and more intricate analysis

of the ordinary cross-validated estimator.
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Example 2. Experiments have been carried out in connection

with method-of-sieves estimates of two-dimensional Poisson

intensity functions and "-spline estimates of univariate

density functions. The two estimation problems are directly

related to each other. The exnerimentshave been used to

(i) determine the small sample behavior of estimators whose

consistency is reasonably straightforward to prove and

(ii) explore questions of consistency for cross-validated

estimators, whose consistency properties are not yet known.

Figure 4 depicts a realization of a two-dimensional Doisson

process on the square Q. For this Particular exneriment, the

nonuniform intensity function assumes two values, corresnondino

to a "hot" region K c Q surrounded by lower-level background

Poisson events. The unknown region K is assumed to be convex,

but otherwise arbitrary and the goal is to reconstruct K from

a finite set of independent projections of the Poisson noints.

The points plotted at the bottom of the figure are

projections to the x-coordinates alone of the Poisson points

in ?. The projected points are a realization of a one-dimensional

Poisson process with a nonhomogeneous intensity that is unimodal

and nonuniform in the interval "shadow" of K. An estimation

procedure analyzed in [341 is based on using the univariate

process to infer the location of K's shadow. Tn the particular

case of polyqonal K, the univariate intensity function is a

spline of order 2 (piecewise linear) and snline estimators are

natural.
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The function depicted in Figure 4 is an estimate for

this particular realization of the process of the univariate

intensity. It is a linear combination of B-splines with

equally-spaced knots. Once the number of knots is specified,

the coefficients of the basis functions that determine the

estimate are found by maximizing the likelihood function.

The general recipe for establishing consistency [191 applies

here to assure that the B-spline estimators are consistent if

the number of knots goes to - suitably slowly (0(n1/4")) as

sample size n increases. But for a fixed-size samnle, the

problem of specifying the number of spline knots is another

instance of the recurrent smoothing problem in nonparametric

estimation.

The spline estimate in Figure 4 lets the data prescribe

the appropriate number of knots by half-sample cross-validation,

maximizing a cross-validation likelihood with respect to the

number of knots; one-half the sample is deleted for each of

two factors in the cross-validation likelihood, instead of

deleting one sample unit for each of n factors as in eqn. III.B.2.3.

The experiments that we have done suggest that the half-

sample cross-validated B-spline estimators are effective for

Droblems such as this one where a target density (or intensity)

has compact support. The theoretical confirmation of any

consistency properties remains a tempting and elusive problem.

The gap between this problew and known results occurs because

the estimators here are not prescribed explicitly, but only

implicitly through the principle of maximum likelihood.
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The experimental results present compelling evidence that

consistency results analogous to known ones will hold for much

more general types of estimators than ones that admit explicit

representation. Another instance is depicted in Figure 5.

Here a cubic spline with m equally spaced knots is used to

estimate a density function for a data set used by Boneva,

Kendall and Stefanov [ 7] to illustrate alternative spline

estimators. The B-spline coefficients are determined by

maximum likelihood and the number of knots is found by maximizing

the half-sample cross-validation likelihood. Our exoerience

with the experiments encourages continuing analysis of the

theoretical problems as described in section IV.A.2 below.

Exneriments that are similar in spirit to the two described

above have been instrumental in focusing our attention on implortant

aspects of the theoretical analysis of (i) the consistency

problem for cross-validated histograms and kernel estimators

[10] and (ii) complex onerator equations that characterize the

bias of certain estimators of regression functions of two

variables (see IV.B). For the cross-validation problem, the

experiments reported by Schuster and Gregory [42] pointed to the

nivotal role of snacines in decidinp the consistency of density

estimators. Our own simulations are important in the formulation

of simple sufficient conditions for consistency. For the

surface regression problems, the striking simplicity of the

numerical solutions of very large systems of linear equations

pointed the direction for proving general nronerties of those

solutions.



48

ID: STEPHENS Figure S

N = 76

K=4; L=12

CVLL - -418

BKS Histospline Estimator
From[73

Fc7

Cross-Validated Cubic B-spline Estimator

Stephen's Data on Orientation of 76 Turtles.



49

IM. Proets in Zsqxsm

As of June 1, 1983 a number of projects were in progress, at

varying stages of completion, that relate directly to our research

program on nonparametric estimation by the method of sieves. These

projects involve collaboration of the principal investigators with

other faculty members (Ulf Grenander at Brown, Lewis Pakula at the

University of Rhode Island, and Donald Geman at the University of

Massachusetts), with postdoctoral associates (Barry Davis and Aytul

Erdal), and with Ph.D. candidates (Shoulamit Shwartz, Nicholas

Accomando, Joyce Anderson, Edmond Nadler and Brock Osborn). We

shall briefly mention the status of these projects, since the work

to date has been supported by contract DAAG29-80-K-0006.

1. Aytul Erdal and Stuart Geman have prepared drafts of manuscripts

that report new consistency and asymptotic distribution results for

cross-validated estimators in ridge regression and principal

components analysis. The manuscripts are based on results reported

in Erdal's 1983 Ph.D. dissertation. The papers will be submitted

for publication.

2. Stuart Geman, Donald McClure, and Barry Davis continue active

collaboration with members of the Division of cardiology at Rhode

Island Hospital on several digital image processing problems. These

include image registration methods for noninvasive digital

subtraction imaging of coronary arteries and image enhancement and

restoration methods for nuclear medicine scans of the myocardium

that have been degraded by photon attenuation. We are experimenting

with the use of the method of sieves to estimate nonlinear
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transformations that map one scene into another; we believe that

this will prove to be an effective and versatile method for

registration of scenes.

Joyce Anderson is working with McClure on use of maximum

likelihood and the method of sieves to enhance the attenuated

nuclear medicine scans. These applications have motivated the study

of new theoretical problems in nonparametric estimation based on

censored data and incomplete observables.

3. Shoulamit Shwartz has completed the research for her Ph.D.

thesis on the design of triangulation sieves for nonparametric

multiple regression. The theoretical questions are motivated by

surface reconstruction problems in remote sensing. The thesis is in

draft form and the results will be included in manuscripts being

prepared for publication with Donald McClure.

4. Stuart Geman and Donald McClure are working together with Ulf

Grenander, Lewis Pakula and Donald Geman on a project to develop

mathematical models for complex systems. The phenomena being

modeled include real pictures of outdoor scenes and of highly

structured scenes and systems as disparate from digital images as

neural systems for complex decision processes such as medical

diagnosis. To date, nine internal working papers have been prepared

by the group. These include a master plan for the project, an

outline of specific open problems, and preliminary results on

particular complex systems under investigation.

5. Stuart Geman, Donald McClure and David Cooper recently organized

the program for an ARO sponsored Workshop on Unsupervised Image
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Analysis. The workshop was held at Brown on 14-16 April 1983.

McClure and Cooper are currently working with Dr. Robert Launer on

the editing of the workshop proceedings which will be published by

Academic Press. Included in the proceedings will be papers by Geman

on "A Markov random field model for image segmentation" and by

McClure on "Image processing algorithms based on methods of

nonparametric inference".

6. Stuart Geman presented an invited talk at the June meeting of

the Institute of Mathematical Statistics in Arcata, CA on the work

with Grenander, D. Geman, and McClure on hierarchical Markovian

models for discrete pictures and restoration algorithms based on

these models.

7. Stuart Geman will present an invited talk on "A parallel

realization for maximum entropy distributions with applications to

problems in inference and optimization" at the Third Workshop on

Maximum Entropy and Bayesian Methods in Applied Statistics on 1-4

August 1983 at the University of Wyoming.

8. Donald McClure will present an invited talk on mathematical

experiments on the computer at the Institute of Mathematical

Statistics Special Topics Meeting on Statistics and Computing on

24-26 October 1983 at Pennsylvania State University.
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M. Publication=s d Tchnic.al Re

The list in this section includes internal and interim technical

reports and published papers that have been prepared as part of the

project on nonparametric estimation by the method of sieves.

Technical reports in the series "Reports in Pattern Analysis" can be

obtained from the Division of Applied Mathematics at Brown

University.

1. S. Geman & C-R. Hwang, Nonparametric maximum likelihood

estimation by the method of sieves, Reports in Pattern Analysis No.

80, 1979. Ann. Statist. vol. 10, 1982, 401-414.

2. S. Geman & C-R. Hwang, A chaos hypothesis for some large systems

of random equations, Reports in Pattern Analysis No. 82, 1979. Z.

Wahrscheinlichkeitstheorie verw. G, vol. 60, 1982, 291-314.

3. S. Geman, An application of the method of sieves: functional

estimator for the drift of a diffusion, Reports in Pattern Analysis

No. 92, 1980. CJ.gguia Mathematica Societas Jans oIyQ2 i, vol. 32,

1980, 231-252.

4. C. Plumeri, Conditioning by inclusion when connection type is

LINEAR, Reports in Pattern Analysis No. 94, 1980. (Ph.D. work

supervised by D. McClure)

5. S. Geman, The law of large numbers in neural modelling, Reports

in Pattern Analysis No. 95, 1980. SITAMS P oceedinal, vol. 13,

1981, 91-105.
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6. C. Plumeri, On convergence of sums of Markov random variables,

Reports in Pattern Analysis No. 96, 1980. (Ph.D. work supervised by

D. McClure)

7. S. Geman, Almost sure stable oscillations in a large system of

randomly coupled equations, Reports in Pattern Analysis No. 97,

1980.

8. S. Geman, Sieves for nonparametric estimation of densities and

regressions, Reports in Pattern Analysis No. 99, 1981.

9. C. Plumeri, Asymptotic probability measure on regular

structures, Reports in Pattern Analysis No. 100, 1981. (Ph.D.

dissertation supervised by D. McClure)

10. J. E. Anderson, Experiments with the method of sieves for

density estimation, Reports in Pattern Analysis No. 105, 1981.

(Honors thesis supervised by S. Geman & D. McClure)

11. Y-S. Chow, S. Geman & L-D. Wu, Consistent cross-validated

density estimation, Reports in Pattern Analysis No. 110, 1981. Ann.

statist. vol. 11, 1983, 25-38.

12. S. Geman & D. E. McClure, Characterization of a maximum

likelihood nonparametric density estimator of kernel type, Reports

in Pattern Analysis No. 114, 1982. PrQ eodinal 2f the NASA WQrksho

2nZ),Jtjyj ti n Md Function Smothing, L. F. Guseman, Jr.

(editor), Texas A&M University (1982), 38-47.

13. D. E. McClure, Estimation of planar sets from Poisson

projections, Reports in Pattern Analysis No. 115, 1982. P



54

of jhe NASAWokso nsityEstiatin =d Fnto moothing,

L. F. Guseman, Jr. (editor), Texas A&M University (1982), 38-47.

14. W. B. Levy & S. Geman, Limit behavior of experimentally derived

synaptic modification rules, Reports in Pattern Analysis No. 121,

1982.

15. S. Geman, Method of sieves, Reports in Pattern Analysis No. 125,

1982. EncyclopQedia f _ s, vol. 5, 1983.

16. N. Accomando, The implementation of maximum likelihood

reconstruction algorithms for single photon emission tomography,

Reports in Pattern Analysis No. 126, 1982. (Ph.D. work supervised by

D. McClure)

17. A. Erdal, Cross-validated ridge regression, Reports in Pattern

Analysis No. 127, 1982. (Ph.D. work supervised by S. Geman)

18. A. Erdal, The method of cross-validation for principal component

analysis, Reports in Pattern Analysis No. 128, 1983. (Ph.D. work

supervised by S. Geman)

19. B. R. Davis & S. Geman, The application of neurobiological and

statistical concepts to machine intelligence, Reports in Pattern

Analysis No. 129, 1983.

20. E. Nadler, Least square approximation of functions on an

equilateral triangle by linear functions, Reports in Pattern

Analysis No. 131, 1983. (Ph.D. work supervised by D. McClure)

21. S. Shwartz, Optimal design of triangulation sieves for
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nonparametric multiple regression and surface restoration, in

preparation. (Ph.D. dissertation supervised by D. McClure)

22. S. Geman, A Markov random field model for image segmentation, in

preparation, to appear in Aua ted Image Analysis: Theory And

ExperiMents, D. Cooper, R. Launer & D. McClure (editors), Academic

Press.

23. D. E. McClure, Image reconstruction algorithms based on methods

of nonparametric inference, in preparation, to appear in Automated

Image Anlysi: LTQZo AnQ ExRperienta, D. Cooper, R. Launer & D.

McClure (editors), Academic Press,
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WI. Pe sonnel

The following people have made substantive contributions to the

research project on nonparametric estimation supported by contract

DAAG29-80-K-0006.

Stuart Geman, co-principal investigator.

Donald E. McClure, co-principal investigator.

Chii-Ruey Hwang, collabrator with S. Geman and Visiting

Assistant Professor at Brown University, 1981.

Nicholas Accomando, Ph.D. candidate, 1980-83, research

supervised by D. McClure.

Joyce E. Anderson, Ph.D. candidate, 1981-83, research

supervised by D. McClure.

Barry R. Davis, Ph.D. candidate, 1980-82, research supervised

by S. Geman. Ph.D. requirements completed June 1982.

Visiting Assistant Professor at Brown University,

1982-83.

Aytul Erdal, Ph.D. candidate, 1980-83, research supervised by

S. Geman. Ph.D. requirements completed January 1983.

Research Associate at Brown University, 1983.
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Edmond Nadler, Ph.D. candidate, 1981-83, research supervised by

D. McClure.

Charles Plumeri, Ph.D. candidate, 1980-81, research supervised

by D. McClure. Ph.D. requirements completed June

1981.

Shoulamit Shwartz, Ph.D. candidate, 1980-83, research

supervised by D. McClure. Thesis research comppleted

June 1983. Degree will be awarded June 1984.
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